3.5.95 \(\int \frac {a+b \text {arccosh}(c x)}{x^2 (d+e x^2)} \, dx\) [495]

3.5.95.1 Optimal result
3.5.95.2 Mathematica [A] (verified)
3.5.95.3 Rubi [A] (verified)
3.5.95.4 Maple [C] (warning: unable to verify)
3.5.95.5 Fricas [F]
3.5.95.6 Sympy [F]
3.5.95.7 Maxima [F(-2)]
3.5.95.8 Giac [F]
3.5.95.9 Mupad [F(-1)]

3.5.95.1 Optimal result

Integrand size = 21, antiderivative size = 543 \[ \int \frac {a+b \text {arccosh}(c x)}{x^2 \left (d+e x^2\right )} \, dx=-\frac {a+b \text {arccosh}(c x)}{d x}+\frac {b c \arctan \left (\sqrt {-1+c x} \sqrt {1+c x}\right )}{d}+\frac {\sqrt {e} (a+b \text {arccosh}(c x)) \log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} (a+b \text {arccosh}(c x)) \log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 (-d)^{3/2}}+\frac {\sqrt {e} (a+b \text {arccosh}(c x)) \log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} (a+b \text {arccosh}(c x)) \log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 (-d)^{3/2}}-\frac {b \sqrt {e} \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 (-d)^{3/2}}+\frac {b \sqrt {e} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 (-d)^{3/2}}-\frac {b \sqrt {e} \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 (-d)^{3/2}}+\frac {b \sqrt {e} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 (-d)^{3/2}} \]

output
(-a-b*arccosh(c*x))/d/x+b*c*arctan((c*x-1)^(1/2)*(c*x+1)^(1/2))/d+1/2*(a+b 
*arccosh(c*x))*ln(1-(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))*e^(1/2)/(c*(-d)^(1/2 
)-(-c^2*d-e)^(1/2)))*e^(1/2)/(-d)^(3/2)-1/2*(a+b*arccosh(c*x))*ln(1+(c*x+( 
c*x-1)^(1/2)*(c*x+1)^(1/2))*e^(1/2)/(c*(-d)^(1/2)-(-c^2*d-e)^(1/2)))*e^(1/ 
2)/(-d)^(3/2)+1/2*(a+b*arccosh(c*x))*ln(1-(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2) 
)*e^(1/2)/(c*(-d)^(1/2)+(-c^2*d-e)^(1/2)))*e^(1/2)/(-d)^(3/2)-1/2*(a+b*arc 
cosh(c*x))*ln(1+(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))*e^(1/2)/(c*(-d)^(1/2)+(- 
c^2*d-e)^(1/2)))*e^(1/2)/(-d)^(3/2)-1/2*b*polylog(2,-(c*x+(c*x-1)^(1/2)*(c 
*x+1)^(1/2))*e^(1/2)/(c*(-d)^(1/2)-(-c^2*d-e)^(1/2)))*e^(1/2)/(-d)^(3/2)+1 
/2*b*polylog(2,(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))*e^(1/2)/(c*(-d)^(1/2)-(-c 
^2*d-e)^(1/2)))*e^(1/2)/(-d)^(3/2)-1/2*b*polylog(2,-(c*x+(c*x-1)^(1/2)*(c* 
x+1)^(1/2))*e^(1/2)/(c*(-d)^(1/2)+(-c^2*d-e)^(1/2)))*e^(1/2)/(-d)^(3/2)+1/ 
2*b*polylog(2,(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))*e^(1/2)/(c*(-d)^(1/2)+(-c^ 
2*d-e)^(1/2)))*e^(1/2)/(-d)^(3/2)
 
3.5.95.2 Mathematica [A] (verified)

Time = 0.99 (sec) , antiderivative size = 549, normalized size of antiderivative = 1.01 \[ \int \frac {a+b \text {arccosh}(c x)}{x^2 \left (d+e x^2\right )} \, dx=\frac {1}{2} \left (-\frac {2 (a+b \text {arccosh}(c x))}{d x}+\frac {2 b c \sqrt {-1+c^2 x^2} \arctan \left (\sqrt {-1+c^2 x^2}\right )}{d \sqrt {-1+c x} \sqrt {1+c x}}+\frac {d \sqrt {e} (a+b \text {arccosh}(c x)) \log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{(-d)^{5/2}}+\frac {\sqrt {e} (a+b \text {arccosh}(c x)) \log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{-c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{(-d)^{3/2}}+\frac {\sqrt {e} (a+b \text {arccosh}(c x)) \log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{(-d)^{3/2}}+\frac {d \sqrt {e} (a+b \text {arccosh}(c x)) \log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{(-d)^{5/2}}+\frac {b \sqrt {e} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{(-d)^{3/2}}+\frac {b d \sqrt {e} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{-c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{(-d)^{5/2}}+\frac {b d \sqrt {e} \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{(-d)^{5/2}}+\frac {b \sqrt {e} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{(-d)^{3/2}}\right ) \]

input
Integrate[(a + b*ArcCosh[c*x])/(x^2*(d + e*x^2)),x]
 
output
((-2*(a + b*ArcCosh[c*x]))/(d*x) + (2*b*c*Sqrt[-1 + c^2*x^2]*ArcTan[Sqrt[- 
1 + c^2*x^2]])/(d*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) + (d*Sqrt[e]*(a + b*ArcCos 
h[c*x])*Log[1 + (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] - Sqrt[-(c^2*d) - e]) 
])/(-d)^(5/2) + (Sqrt[e]*(a + b*ArcCosh[c*x])*Log[1 + (Sqrt[e]*E^ArcCosh[c 
*x])/(-(c*Sqrt[-d]) + Sqrt[-(c^2*d) - e])])/(-d)^(3/2) + (Sqrt[e]*(a + b*A 
rcCosh[c*x])*Log[1 - (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) 
- e])])/(-d)^(3/2) + (d*Sqrt[e]*(a + b*ArcCosh[c*x])*Log[1 + (Sqrt[e]*E^Ar 
cCosh[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e])])/(-d)^(5/2) + (b*Sqrt[e]*Po 
lyLog[2, (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] - Sqrt[-(c^2*d) - e])])/(-d) 
^(3/2) + (b*d*Sqrt[e]*PolyLog[2, (Sqrt[e]*E^ArcCosh[c*x])/(-(c*Sqrt[-d]) + 
 Sqrt[-(c^2*d) - e])])/(-d)^(5/2) + (b*d*Sqrt[e]*PolyLog[2, -((Sqrt[e]*E^A 
rcCosh[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e]))])/(-d)^(5/2) + (b*Sqrt[e]* 
PolyLog[2, (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e])])/(- 
d)^(3/2))/2
 
3.5.95.3 Rubi [A] (verified)

Time = 1.32 (sec) , antiderivative size = 543, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {6374, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \text {arccosh}(c x)}{x^2 \left (d+e x^2\right )} \, dx\)

\(\Big \downarrow \) 6374

\(\displaystyle \int \left (\frac {a+b \text {arccosh}(c x)}{d x^2}-\frac {e (a+b \text {arccosh}(c x))}{d \left (d+e x^2\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt {e} (a+b \text {arccosh}(c x)) \log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {c^2 (-d)-e}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} (a+b \text {arccosh}(c x)) \log \left (\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {c^2 (-d)-e}}+1\right )}{2 (-d)^{3/2}}+\frac {\sqrt {e} (a+b \text {arccosh}(c x)) \log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{\sqrt {c^2 (-d)-e}+c \sqrt {-d}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} (a+b \text {arccosh}(c x)) \log \left (\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{\sqrt {c^2 (-d)-e}+c \sqrt {-d}}+1\right )}{2 (-d)^{3/2}}-\frac {a+b \text {arccosh}(c x)}{d x}-\frac {b \sqrt {e} \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-d c^2-e}}\right )}{2 (-d)^{3/2}}+\frac {b \sqrt {e} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-d c^2-e}}\right )}{2 (-d)^{3/2}}-\frac {b \sqrt {e} \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{\sqrt {-d} c+\sqrt {-d c^2-e}}\right )}{2 (-d)^{3/2}}+\frac {b \sqrt {e} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{\sqrt {-d} c+\sqrt {-d c^2-e}}\right )}{2 (-d)^{3/2}}+\frac {b c \arctan \left (\sqrt {c x-1} \sqrt {c x+1}\right )}{d}\)

input
Int[(a + b*ArcCosh[c*x])/(x^2*(d + e*x^2)),x]
 
output
-((a + b*ArcCosh[c*x])/(d*x)) + (b*c*ArcTan[Sqrt[-1 + c*x]*Sqrt[1 + c*x]]) 
/d + (Sqrt[e]*(a + b*ArcCosh[c*x])*Log[1 - (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqr 
t[-d] - Sqrt[-(c^2*d) - e])])/(2*(-d)^(3/2)) - (Sqrt[e]*(a + b*ArcCosh[c*x 
])*Log[1 + (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] - Sqrt[-(c^2*d) - e])])/(2 
*(-d)^(3/2)) + (Sqrt[e]*(a + b*ArcCosh[c*x])*Log[1 - (Sqrt[e]*E^ArcCosh[c* 
x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e])])/(2*(-d)^(3/2)) - (Sqrt[e]*(a + b*A 
rcCosh[c*x])*Log[1 + (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) 
- e])])/(2*(-d)^(3/2)) - (b*Sqrt[e]*PolyLog[2, -((Sqrt[e]*E^ArcCosh[c*x])/ 
(c*Sqrt[-d] - Sqrt[-(c^2*d) - e]))])/(2*(-d)^(3/2)) + (b*Sqrt[e]*PolyLog[2 
, (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] - Sqrt[-(c^2*d) - e])])/(2*(-d)^(3/ 
2)) - (b*Sqrt[e]*PolyLog[2, -((Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] + Sqrt[ 
-(c^2*d) - e]))])/(2*(-d)^(3/2)) + (b*Sqrt[e]*PolyLog[2, (Sqrt[e]*E^ArcCos 
h[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e])])/(2*(-d)^(3/2))
 

3.5.95.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 6374
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e 
_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcCosh[c*x])^n, 
 (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^2*d 
 + e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
 
3.5.95.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 26.27 (sec) , antiderivative size = 331, normalized size of antiderivative = 0.61

method result size
parts \(-\frac {a}{d x}-\frac {a e \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{d \sqrt {d e}}+b c \left (-\frac {\operatorname {arccosh}\left (c x \right )}{c x d}+\frac {2 \arctan \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{d}+\frac {e \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (4 c^{2} d +2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (\textit {\_R1}^{2} e +4 c^{2} d +e \right ) \left (\operatorname {arccosh}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{8 d^{2} c^{2}}-\frac {e \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (4 c^{2} d +2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (4 \textit {\_R1}^{2} c^{2} d +\textit {\_R1}^{2} e +e \right ) \left (\operatorname {arccosh}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{8 d^{2} c^{2}}\right )\) \(331\)
derivativedivides \(c \left (-\frac {a e \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{c d \sqrt {d e}}-\frac {a}{d c x}-\frac {b \,\operatorname {arccosh}\left (c x \right )}{c x d}+\frac {2 b \arctan \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{d}-\frac {b e \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (4 c^{2} d +2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (4 \textit {\_R1}^{2} c^{2} d +\textit {\_R1}^{2} e +e \right ) \left (\operatorname {arccosh}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{8 c^{2} d^{2}}+\frac {b e \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (4 c^{2} d +2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (\textit {\_R1}^{2} e +4 c^{2} d +e \right ) \left (\operatorname {arccosh}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{8 c^{2} d^{2}}\right )\) \(339\)
default \(c \left (-\frac {a e \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{c d \sqrt {d e}}-\frac {a}{d c x}-\frac {b \,\operatorname {arccosh}\left (c x \right )}{c x d}+\frac {2 b \arctan \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{d}-\frac {b e \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (4 c^{2} d +2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (4 \textit {\_R1}^{2} c^{2} d +\textit {\_R1}^{2} e +e \right ) \left (\operatorname {arccosh}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{8 c^{2} d^{2}}+\frac {b e \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (4 c^{2} d +2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (\textit {\_R1}^{2} e +4 c^{2} d +e \right ) \left (\operatorname {arccosh}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{8 c^{2} d^{2}}\right )\) \(339\)

input
int((a+b*arccosh(c*x))/x^2/(e*x^2+d),x,method=_RETURNVERBOSE)
 
output
-a/d/x-a*e/d/(d*e)^(1/2)*arctan(e*x/(d*e)^(1/2))+b*c*(-arccosh(c*x)/c/x/d+ 
2/d*arctan(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))+1/8/d^2*e/c^2*sum((_R1^2*e+4*c 
^2*d+e)/_R1/(_R1^2*e+2*c^2*d+e)*(arccosh(c*x)*ln((_R1-c*x-(c*x-1)^(1/2)*(c 
*x+1)^(1/2))/_R1)+dilog((_R1-c*x-(c*x-1)^(1/2)*(c*x+1)^(1/2))/_R1)),_R1=Ro 
otOf(e*_Z^4+(4*c^2*d+2*e)*_Z^2+e))-1/8/d^2*e/c^2*sum((4*_R1^2*c^2*d+_R1^2* 
e+e)/_R1/(_R1^2*e+2*c^2*d+e)*(arccosh(c*x)*ln((_R1-c*x-(c*x-1)^(1/2)*(c*x+ 
1)^(1/2))/_R1)+dilog((_R1-c*x-(c*x-1)^(1/2)*(c*x+1)^(1/2))/_R1)),_R1=RootO 
f(e*_Z^4+(4*c^2*d+2*e)*_Z^2+e)))
 
3.5.95.5 Fricas [F]

\[ \int \frac {a+b \text {arccosh}(c x)}{x^2 \left (d+e x^2\right )} \, dx=\int { \frac {b \operatorname {arcosh}\left (c x\right ) + a}{{\left (e x^{2} + d\right )} x^{2}} \,d x } \]

input
integrate((a+b*arccosh(c*x))/x^2/(e*x^2+d),x, algorithm="fricas")
 
output
integral((b*arccosh(c*x) + a)/(e*x^4 + d*x^2), x)
 
3.5.95.6 Sympy [F]

\[ \int \frac {a+b \text {arccosh}(c x)}{x^2 \left (d+e x^2\right )} \, dx=\int \frac {a + b \operatorname {acosh}{\left (c x \right )}}{x^{2} \left (d + e x^{2}\right )}\, dx \]

input
integrate((a+b*acosh(c*x))/x**2/(e*x**2+d),x)
 
output
Integral((a + b*acosh(c*x))/(x**2*(d + e*x**2)), x)
 
3.5.95.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \text {arccosh}(c x)}{x^2 \left (d+e x^2\right )} \, dx=\text {Exception raised: ValueError} \]

input
integrate((a+b*arccosh(c*x))/x^2/(e*x^2+d),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.5.95.8 Giac [F]

\[ \int \frac {a+b \text {arccosh}(c x)}{x^2 \left (d+e x^2\right )} \, dx=\int { \frac {b \operatorname {arcosh}\left (c x\right ) + a}{{\left (e x^{2} + d\right )} x^{2}} \,d x } \]

input
integrate((a+b*arccosh(c*x))/x^2/(e*x^2+d),x, algorithm="giac")
 
output
integrate((b*arccosh(c*x) + a)/((e*x^2 + d)*x^2), x)
 
3.5.95.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \text {arccosh}(c x)}{x^2 \left (d+e x^2\right )} \, dx=\int \frac {a+b\,\mathrm {acosh}\left (c\,x\right )}{x^2\,\left (e\,x^2+d\right )} \,d x \]

input
int((a + b*acosh(c*x))/(x^2*(d + e*x^2)),x)
 
output
int((a + b*acosh(c*x))/(x^2*(d + e*x^2)), x)